THE PROBLEM: The Jeep Wrangler auxiliary light bracket mount had a stress fracture thus needed to be replaced. THE CHALLENGE: Reverse Engineer the Jeep Wrangler auxiliary light bracket mount and make it stronger than the original bracket mount using the latest 3D scanning and 3D printing technologies. 1. Background Chris loves driving around Lake Tahoe in his open-top Jeep Wrangler, enjoying the blue skies and fresh air. The Jeep Wrangler is his vehicle of choice for fun adventures and transporting his wet dog after a swim in the lake. One day, Chris noticed that one of the auxiliary light mount brackets at the front had cracked. Initially, he planned to search for replacement parts, but then he heard about Growshapes' 3D scanning technology. Intrigued by the idea of reverse engineering and 3D printing the bracket, he contacted Growshapes to explore the possibilities. The original bracket mounts were made of plastic and had cracked under stress, so Chris was looking for a solution that would be stronger and more durable than the originals. 2. The Tools and Method Growshapes used Einscan Pro 2X 2020 to 3D scan the cracked plastic bracket mount and worked with an engineer at Uniformity Labs to reverse engineer and create a metal 3D-printed replica. 3. The Reverse Engineering Process Step 1: 3D scan the bracket mount to capture complex geometries using Einscan Pro 2X 2020 Growshapes received the broken plastic bracket mount from Chris. Judging from the size of the part, we decided the best scanning tool was the EinScan Pro 2X 2020 that can capture intricate details with high accuracy, especially in fixed scan mode using it in conjunction with the automated turntable. For small objects, EinScan Pro 2X is the way to go for sure. It captures fine details as point cloud data, then converts it into a mesh that can be exported as an .stl file into a CAD software such as Solidworks. Growshapes 3D scanned the black plastic part that had a fracture on the main wall of the bracket mount. You can see the fracture in the scan results below. We scanned the bracket in fixed mode to digitally capture accurate data of this small part. Fixed scan mode was chosen to use the 3D scanner with the automated turntable. There was no need to put any markers on the parts as the scan was aligned to the markers on the turntable and didn’t even require spraying even though the part was black. The Einscan Pro 2X 2020 uses structured white light technology and the software allows for the capture of dark parts.
Step 2: Reverse Engineering We required expert knowledge rather than simply converting the 3D scan data into a solid model in CAD as the output was going to use additive manufacturing technology, and 3D printed metal. Therefore Growshapes worked with an expert at Uniformity Labs to create the output required. Groweshapes sent the raw scan data in .stl file format to Marlon. Marlon, who led Application Engineering at Uniformity Labs started the reverse engineering process by importing the .stl file of the original design that Growhapes 3D scanned into his CAD software Solidworks. For Marlon, extracting the geometry data from scan data was easier and required less time than measuring the bracket with calipers as it gave accurate values quickly. Furthermore in the CAD software, Marlon was able to model directly over the scan using it as a constant reference. The key expertise Marlon added further was optimizing the design for additive manufacturing in metal, i.e. removing as much material as possible while ensuring strengths which results in adding lattice design. The steps that were taken from editing the scan files to print:
Some of the challenges Marlon faced specifically for optimizing for additive manufacturing:
Things specifically engineered to optimize for 3D printing:
The original bracket was made from injection molded plastic but the plastic gave way to stress over time. The metal bracket should be stronger than the original plastic bracket mounts. Marlon decided to use 316L (stainless steel) as is resistant to corrosion in harsh weather and can withstand varying temperatures. Injection molding requires a substantial investment in tooling thus requires volume production but with additive manufacturing, one-off print is possible with drastically shorter lead times. See the full additive manufacturing workflow below: Chris is happy with the new and improved auxiliary light bracket mount that is stronger than the original one that came with the Jeep Wrangler. He won't have to worry about having another stress fracture in the bracket mount. Reverse Engineering is not just about replicating but also about improving upon the original design! Check out the mounting brackets that were fixed onto the Jeep Wrangler below. Growshapes the official U.S. distributor of Shining 3D EinScan 3D scanners. We now carry the eviXscan 3D scanner and THREE from Matter and Form as well!
See the innovators on Growshapes’ social media channels to get the latest expert news on innovation in 3D digitization, then share your thoughts and join the conversation about 3D digital innovation with #digitize3D
0 Comments
In the ever-evolving world of watersports, efoiling has taken the spotlight with its thrilling combination of surfing and flying above water. Efoil boards, propelled by electric motors, offer an exhilarating experience, and at the heart of their performance lies the efoil wing. However, this industry is young and manufacturers struggle to survive such as FOIL Inc (getfoil.com) as there is not enough demand out there leaving enthusiasts in a lurch when their favorite wing model is no longer available to purchase and the original designs may be lost. Fortunately, 3D scanning and reverse engineering offer a lifeline for reviving these designs. In this blog post, we'll explore how you can use 3D scanning technology to bring an out-of-production foil wing back to life. Importance of the Efoil Wing The efoil wing is crucial for the lift and stability of the board, directly affecting the rider's experience. Each wing model has its unique design that caters to different riding styles, water conditions, and skill levels. When a beloved wing is no longer produced, finding a suitable replacement can be challenging, making reverse engineering an appealing solution. We have 3D scanned the efoil wing 200 of the FOIL series using the EinScan Pro HD with high accuracy as the initial step to enable full reverse engineering and manufacturing. PART I: 3D SCANNNING TO CAPTURE THE ACCURATE SIZE AND CURVATURE Step 1: Preparing for 3D Scanning Before diving into the scanning process, you'll need the right tools and a suitable environment. Here is what we used.
Step 2: 3D Scanning the Efoil Wing
Step 3: Post Processing
Here is the STL file so you can further reverse engineer and manufacture via 3D printing!
PART II: REVERSE ENGINEERING
PART III: MANUFACTURING Once satisfied with the redesigned model, it's time to manufacture the wing.
CONCLUSION 3D scanning and reverse engineering provide a powerful combination for resurrecting discontinued efoil wings. By capturing the precise geometry of a classic wing and using modern tools to refine and replicate its design, enthusiasts can continue to enjoy their favorite efoil experiences. Whether you're an efoil aficionado or a watersports innovator, this technology opens up a world of possibilities for preserving and enhancing the sport. So, don't despair about FOIL Inc going bust, let technology breathe new life into it! Growshapes the official U.S. distributor of Shining 3D EinScan 3D scanners. We now carry the eviXscan 3D scanner from Evatronix as well!
See the innovators on Growshapes’ social media channels to get the latest expert news on innovation in 3D digitization, then share your thoughts and join the conversation about 3D digital innovation with #digitize3D |
GrowshapesProvider of leading edge 3D scanning products and services. We see 3D! Archives
November 2024
Categories
All
|